[Potensi Senyawa Bioaktif Susu Sapi dan Kacang-kacangan Lokal Sebagai Bahan Pangan Fungsional] : Review

Cahyo Budiyanto, Bayu Kanetro, Sri Luwihana

Sari


Penelitian senyawa bioaktif bahan pangan menjadi topik yang banyak dilakukan oleh para peneliti karena selain memberikan asupan nutrisi serta  pengaruhnya terhadap kesehatan. Susu sapi dan kacang-kacangan sebagai sumber protein hewani dan nabati diketahui mengandung sejumlah senyawa bioaktif yang memberikan efek terhadap kesehatan manusia. Tujuan review ini adalah untuk mengetahui senyawa bioaktif pada susu sapi dan beberapa jenis kacang-kacangan lokal (kedelai, kacang hijau dan koro pedang) beserta pengaruhnya pada kesehatan sehingga dapat dimanfaatkan secara tunggal ataupun campuran untuk pangan fungsional. Berdasarkan review beberapa jurnal yang ada senyawa bioaktif pada susu sapi pada review ini difokuskan pada laktoferin yang berperan sebagai  antimikroba, mencegah anemia (defisiensi besi) dan pembentukan tulang, sedangkan senyawa bioaktif pada kacang-kacangan baik dalam biji ataupun kecambah adalah asam amino yang berperan dalam pencegahan penyakit diabetes, penyakit jantung koroner dan perkembangan otak. Oleh karena itu, pada review ini dapat disimpulkan bahwa susu sapi dan beberapa jenis kacang lokal seperti kedelai, kacang hijau dan koro pedang baik dalam bentuk biji atau kecambah dapat menjadi sumber senyawa bioaktif dan berpotensi sebagai pangan fungsional dalam bentuk tunggal ataupun campuran keduanya.

Kata Kunci


senyawa bioaktif, pangan fungsional, kesehatan.

Teks Lengkap:

PDF

Referensi


Arai, Y., Watanabe, S., Kimira, M., Shimoi, K., Mochizuki, R., & Kinae, N. (2000). Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. Journal of Nutrition, 130(9), 2243–2250. https://doi.org/10.1093/jn/130.9.2243

Balsha, K. M., Rateb, A. M., & Mamdouh, A. M. (2018). The Effect of Orally Administered Iron-Saturated Lactoferrin on Systemic Iron Homeostasis in Pregnant Women Suffering from Iron Deficiency and Iron Deficiency Anaemia. The Egyptian Journal of Hospital Medicine, 71(4), 2851–2857.

Bermejo-Pareja, F., del Ser, T., Valentí, M., de la Fuente, M., Bartolome, F., & Carro, E. (2020). Salivary lactoferrin as biomarker for Alzheimer’s disease: Brain-immunity interactions. Alzheimer’s and Dementia, 16(8), 1196–1204. https://doi.org/10.1002/alz.12107

Biernbaum, E. N., Gnezda, A., Akbar, S., Franklin, R., Venturelli, P. A., & McKillip, J. L. (2021). Lactoferrin as an antimicrobial against Salmonella enterica and Escherichia coli O157:H7 in raw milk. JDS Communications. https://doi.org/10.3168/jdsc.2020-0030

Briliansari, D. A., Prijadi, B., & Ari Nugroho, F. (2016). Pengaruh Pemberian Kacang Hijau (Phaseolus radiatus L.) terhadap Pencegahan Peningkatan Kadar Glukosa Darah pada Tikus (Rattus novergicus) Galur Wistar Bunting. Majalah Kesehatan, 3(1), 25–32. https://doi.org/10.21776/ub.majalahkesehatan.003.01.4

Calbet, J. A. L., & MacLean, D. A. (2002). Plasma Glucagon and Insulin Responses Depend on the Rate of Appearance of Amino Acids after Ingestion of Different Protein Solutions in Humans. The Journal of Nutrition. https://doi.org/10.1093/jn/132.8.2174

Calderone, V., Chericoni, S., Martinelli, C., Testai, L., Nardi, A., Morelli, I., Breschi, M. C., & Martinotti, E. (2004). Vasorelaxing effects of flavonoids: Investigation on the possible involvement of potassium channels. Naunyn-Schmiedeberg’s Archives of Pharmacology, 370(4), 290–298. https://doi.org/10.1007/s00210-004-0964-z

Cheng, Y., Sun, J., Zhou, Z., Pan, J., Zou, S., & Chen, J. (2018). Effects of lactoferrin on bone resorption of midpalatal suture during rapid expansion in rats. American Journal of Orthodontics and Dentofacial Orthopedics, 154(1), 115–127. https://doi.org/10.1016/j.ajodo.2017.09.020

Cutone, A., Rosa, L., Ianiro, G., Lepanto, M. S., Di Patti, M. C. B., Valenti, P., & Musci, G. (2020). Lactoferrin’s anti-cancer properties: Safety, selectivity, and wide range of action. Biomolecules, 10(3), 1–26. https://doi.org/10.3390/biom10030456

El-Khawaga, A., & Abdelmaksoud, H. (2019). Effect of Lactoferrin Supplementation on Iron Deficiency Anemia in Primary School Children. International Journal of Medical Arts, 0(0), 0–0. https://doi.org/10.21608/ijma.2019.12596.1003

El-Sayed, M., & Awad, S. (2019). Milk Bioactive Peptides: Antioxidant, Antimicrobial and Anti-Diabetic Activities. Advances in Biochemistry, 7(1), 22. https://doi.org/10.11648/j.ab.20190701.15

Farnaud, S., & Evans, R. W. (2003). Lactoferrin - A multifunctional protein with antimicrobial properties. Molecular Immunology, 40(7), 395–405. https://doi.org/10.1016/S0161-5890(03)00152-4

Gao, R., Watson, M., Callon, K. E., Tuari, D., Dray, M., Naot, D., Amirapu, S., Munro, J. T., Cornish, J., & Musson, D. S. (2018). Local application of lactoferrin promotes bone regeneration in a rat critical-sized calvarial defect model as demonstrated by micro-CT and histological analysis. Journal of Tissue Engineering and Regenerative Medicine, 12(1), e620–e626. https://doi.org/10.1002/term.2348

Gao, Y., Chen, T., & Raj, J. U. (2016). Endothelial and smooth muscle cell interactions in the pathobiology of pulmonary hypertension. American Journal of Respiratory Cell and Molecular Biology, 54(4), 451–460. https://doi.org/10.1165/rcmb.2015-0323TR

Garg, S., Lule, V. K., Malik, R. K., & Tomar, S. K. (2016). Soy Bioactive Components in Functional Perspective: A Review. International Journal of Food Properties, 19(11), 2550–2574. https://doi.org/10.1080/10942912.2015.1136936

Gobbetti, M., Minervini, F., & Rizzello, C. G. (2012). Bioactive peptides in dairy products. International Journal of Dairy Technology, 65(1), 1–12. https://doi.org/10.1111/j.1471-0307.2011.00725.x

Guedes, J. P., Pereira, C. S., Rodrigues, L. R., & Côrte-Real, M. (2018). Bovine milk lactoferrin selectively kills highly metastatic prostate cancer PC-3 and osteosarcoma MG-63 cells in vitro. Frontiers in Oncology, 8(JUN), 1–12. https://doi.org/10.3389/fonc.2018.00200

Kim, S. W., McPherson, R. L., & Wu, G. (2004). Dietary Arginine Supplementation Enhances the Growth of Milk-Fed Young Pigs. The Journal of Nutrition. https://doi.org/10.1093/jn/134.3.625

Korhonen, H. J. ., Rahman, N. N., Khan, M., & Hasan, R. (2009). Bioactive components from (Vol. 66).

Kris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A. E., Hilpert, K. F., Griel, A. E., & Etherton, T. D. (2002). Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. American Journal of Medicine, 113(9 SUPPL. 2), 71–88. https://doi.org/10.1016/s0002-9343(01)00995-0

Larson, A. J., David Symons, J., & Jalili, T. (2012). Therapeutic potential of quercetin to decrease blood pressure: Review of efficacy and mechanisms. Advances in Nutrition, 3(1), 39–46. https://doi.org/10.3945/an.111.001271

Leeya, Y., Mulvany, M. J., Queiroz, E. F., Marston, A., Hostettmann, K., & Jansakul, C. (2010). Hypotensive activity of an n-butanol extract and their purified compounds from leaves of Phyllanthus acidus (L.) Skeels in rats. European Journal of Pharmacology, 649(1–3), 301–313. https://doi.org/10.1016/j.ejphar.2010.09.038

Lepanto, M. S., Rosa, L., Cutone, A., Conte, M. P., Paesano, R., & Valenti, P. (2018). Efficacy of lactoferrin oral administration in the treatment of anemia and anemia of inflammation in pregnant and non-pregnant women: An interventional study. Frontiers in Immunology, 9(SEP), 1–12. https://doi.org/10.3389/fimmu.2018.02123

Li, H. Y., Li, P., Yang, H. G., Wang, Y. Z., Huang, G. X., Wang, J. Q., & Zheng, N. (2019). Investigation and comparison of the anti-tumor activities of lactoferrin, α-lactalbumin, and β-lactoglobulin in A549, HT29, HepG2, and MDA231-LM2 tumor models. Journal of Dairy Science, 102(11), 9586–9597. https://doi.org/10.3168/jds.2019-16429

Li, Hui Ying, Li, M., Luo, C. C., Wang, J. Q., & Zheng, N. (2017). Lactoferrin Exerts Antitumor Effects by Inhibiting Angiogenesis in a HT29 Human Colon Tumor Model. Journal of Agricultural and Food Chemistry, 65(48), 10464–10472. https://doi.org/10.1021/acs.jafc.7b03390

Liu, D., Homan, L. L., & Dillon, J. S. (2004). Genistein acutely stimulates nitric oxide synthesis in vascular endothelial cells by a cyclic adenosine 5′-monophosphate-dependent mechanism. Endocrinology, 145(12), 5532–5539. https://doi.org/10.1210/en.2004-0102

Lönnerdal, B. (2003). Nutritional and physiologic significance of human milk proteins. The American Journal of Clinical Nutrition, 77(6). https://doi.org/10.1093/ajcn/77.6.1537s

Mbithi Mwikya, S., Van Camp, J., Rodriguez, R., & Huyghebaert, A. (2001). Effects of sprouting on nutrient and antinutrient composition of kidney beans (Phaseolus vulgaris var. Rose coco). European Food Research and Technology, 212(2), 188–191. https://doi.org/10.1007/s002170000200

Meenu, M., Kamboj, U., Sharma, A., Guha, P., & Mishra, S. (2016). Green method for determination of phenolic compounds in mung bean (Vigna radiata L.) based on near-infrared spectroscopy and chemometrics. International Journal of Food Science and Technology, 51(12), 2520–2527. https://doi.org/10.1111/ijfs.13232

Meenu, M., Sharma, A., Guha, P., & Mishra, S. (2016). A Rapid High-Performance Liquid Chromatography Photodiode Array Detection Method to Determine Phenolic Compounds in Mung Bean (Vigna radiata L.). International Journal of Food Properties, 19(10), 2223–2237. https://doi.org/10.1080/10942912.2015.1121396

Michael, K. G., Sogbesan, O. A., & Onyia, L. U. (2018). Effect of Processing Methods on the Nutritional Value of Canavalia ensiformis Jack Bean Seed Meal. Journal of Food Processing & Technology, 9(12). https://doi.org/10.4172/2157-7110.1000766

Newsholme, P., Brennan, L., & Bender, K. (2006). Amino acid metabolism, β-cell function, and diabetes. Diabetes, 55(SUPPL. 2), 39–47. https://doi.org/10.2337/db06-S006

Niaz, B., Saeed, F., Ahmed, A., Imran, M., Maan, A. A., Khan, M. K. I., Tufail, T., Anjum, F. M., Hussain, S., & Suleria, H. A. R. (2019). Lactoferrin (LF): a natural antimicrobial protein. International Journal of Food Properties, 22(1), 1626–1641. https://doi.org/10.1080/10942912.2019.1666137

Paja̧k, P., Socha, R., Gałkowska, D., Roz̊nowski, J., & Fortuna, T. (2014). Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chemistry, 143, 300–306. https://doi.org/10.1016/j.foodchem.2013.07.064

Pan, Y., Rowney, M., Guo, P., & Hobman, P. (2007). Biological properties of lactoferrin: An overview. Australian Journal of Dairy Technology, 62(1), 31–42.

Purwoko, A. E., Astuti, I., Asdie, A. H., & Sugiyanto. (2019). Effect of Soybean-based Food Supplement on Insulin and Glucose Levels in Type 2 Diabetes Mellitus Patients. Indonesian Journal of Pharmacy, 30(3), 208–216. https://doi.org/10.14499/indonesianjpharm30iss3pp208

Puzserova, A., & Bernatova, I. (2016). Blood pressure regulation in stress: Focus on nitric oxide-dependent mechanisms. Physiological Research, 65, S309–S342. https://doi.org/10.33549/physiolres.933442

Sans, M. D., Tashiro, M., Vogel, N. L., Kimball, S. R., D’Alecy, L. G., & Williams, J. A. (2006). Leucine Activates Pancreatic Translational Machinery in Rats and Mice through mTOR Independently of CCK and Insulin1–3. The Journal of Nutrition, 136(7), 1792–1799. https://doi.org/10.1093/jn/136.7.1792

Schanbacher, F. L., Talhouk, R. S., Murray, F. A., Gherman, L. I., & Willett, L. B. (1998). Milk-Borne Bioactive Peptides. 6946(98), 393–403.

Shi, P., Fan, F., Chen, H., Xu, Z., Cheng, S., Lu, W., & Du, M. (2020). A bovine lactoferrin–derived peptide induced osteogenesis via regulation of osteoblast proliferation and differentiation. Journal of Dairy Science, 103(5), 3950–3960. https://doi.org/10.3168/jds.2019-17425

Singh, J. P., Singh, B., & Kaur, A. (2020). Bioactive Compounds of Legume Seeds. October, 1–21. https://doi.org/10.1007/978-3-030-44578-2_33-1

Su, J., Xu, H. T., Yu, J. J., Gao, J. L., Lei, J., Yin, Q. S., Li, B., Pang, M. X., Su, M. X., Mi, W. J., Chen, S. H., & Lv, G. Y. (2015). Luteolin Ameliorates Hypertensive Vascular Remodeling through Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells. Evidence-Based Complementary and Alternative Medicine, 2015. https://doi.org/10.1155/2015/364876

Sutedja, A. M., Yanase, E., Batubara, I., Fardiaz, D., & Lioe, H. N. (2020). Identification and Characterization of α-Glucosidase Inhibition Flavonol Glycosides from Jack Bean (Canavalia ensiformis (L.) DC. Molecules, 25(11). https://doi.org/10.3390/molecules25112481

Taruni R, T., Sivaraman, M., Dutta, T., & K. R. Dhanasekar, D. (2018). A Comparative Study to Evaluate the Efficacy of Oral Lactoferrin Fortified Bovine Colostrum with Oral Iron in the Treatment of Iron Deficiency Anemia. International Journal of Medicine and Public Health, 8(2), 65–70. https://doi.org/10.5530/ijmedph.2018.2.15

Thamcharoen, N., Susantitaphong, P., Wongrakpanich, S., Chongsathidkiet, P., Tantrachoti, P., Pitukweerakul, S., Avihingsanon, Y., Praditpornsilpa, K., Jaber, B. L., & Eiam-Ong, S. (2015). Effect of N- and T-type calcium channel blocker on proteinuria, blood pressure and kidney function in hypertensive patients: A meta-analysis. Hypertension Research, 38(12), 847–855. https://doi.org/10.1038/hr.2015.69

van Loon, L. J. C., Kruijshoop, M., Verhagen, H., Saris, W. H. M., & Wagenmakers, A. J. M. (2000). Ingestion of Protein Hydrolysate and Amino Acid–Carbohydrate Mixtures Increases Postexercise Plasma Insulin Responses in Men. The Journal of Nutrition. https://doi.org/10.1093/jn/130.10.2508

Vega-Bautista, A., de la Garza, M., Carrero, J. C., Campos-Rodríguez, R., Godínez-Victoria, M., & Drago-Serrano, M. E. (2019). The impact of lactoferrin on the growth of intestinal inhabitant bacteria. International Journal of Molecular Sciences, 20(19). https://doi.org/10.3390/ijms20194707

Venkidasamy, B., Selvaraj, D., Nile, A. S., Ramalingam, S., Kai, G., & Nile, S. H. (2019). Indian pulses: A review on nutritional, functional and biochemical properties with future perspectives. Trends in Food Science and Technology, 88(March), 228–242. https://doi.org/10.1016/j.tifs.2019.03.012

Vidal-Valverde, C., Frias, J., Sierra, I., Blazquez, I., Lambein, F., & Kuo, Y. H. (2002). New functional legume foods by germination: Effect on the nutritive value of beans, lentils and peas. European Food Research and Technology, 215(6), 472–477. https://doi.org/10.1007/s00217-002-0602-2

Wakabayashi, H., Yamauchi, K., & Takase, M. (2006). Lactoferrin research, technology and applications. International Dairy Journal, 16(11), 1241–1251. https://doi.org/10.1016/j.idairyj.2006.06.013

Walia, A., Gupta, A. K., & Sharma, V. (2019). Role of Bioactive Compounds in Human Health. Acta Scientific Medical Sciences, 3(9), 25–33.

Weaver, C. M. (2014). Bioactive foods and ingredients for health. Advances in Nutrition, 5(3), 306S-311S. https://doi.org/10.3945/an.113.005124

Widjajaseputra, A. I., Widyastuti, T. E. W., & Trisnawati, C. Y. (2019). Mung bean as food source for breastfeeding women with diabetes mellitus in Indonesia: Carbohydrate profiles at different soaking times. Food Research, 3(6), 828–832. https://doi.org/10.26656/fr.2017.3(6).209

Yang, J., Wong, R. K., Park, M., Wu, J., Cook, J. R., York, D. A., Deng, S., Markmann, J., Naji, A., Wolf, B. A., & Gao, Z. (2006). Leucine Regulation of Glucokinase and ATP Synthase. 55(January), 193–201.

Zheng, J., Xie, Y., Li, F., Zhou, Y., Qi, L., Liu, L., & Chen, Z. (2020). Lactoferrin improves cognitive function and attenuates brain senescence in aged mice. Journal of Functional Foods, 65(November 2019), 103736. https://doi.org/10.1016/j.jff.2019.103736

Zimecki, M., & Kruzel, M. L. (2007). Milk-derived proteins and peptides of potential therapeutic and nutritive value. Journal of Experimental Therapeutics and Oncology, 6(2), 89–106.


Refbacks

  • Saat ini tidak ada refbacks.


View My Stats