Development and Testing of Zeolite-Based Slow Release Fertilizer NZEO-SR in Water and Soil Media

Kharisun Kharisun, Mohammad Rif’an, Mochamad Nazarudin Budiono, Ruly Eko Kusuma Kurniawan

Abstract


The research was carried out in the Laboratory of Soil Science and greenhouse Agriculture Faculty, Jenderal Soedirman University. This experiment was aimed at studying the effects of fertilizer adhesive levels and fertilizer granule size on water penetration, water, and soil chemical properties. The research was laid out according to Completely Randomized Design (CRD), consisting of 2 factors i.e. fertilizer granule size (2 sizes) and fertilizer adhesive (5 levels). There were 10 types of NZEO-SR fertilizers tested with 3 replications. The fertilizers were tested in water and soil media, totaling 60 experimental units. The results showed that NZEO-SR fertilizer having a diameter of 2.5 - 3.0 mm in combination with 3% (w/w) fertilizer adhesive had the highest ability to resist water penetration. Levels of fertilizer adhesive material gave significant effects on pH (H2O), electrical conductivity (EC) and water-soluble N. Diameter of fertilizer had no effect on all the variables studied, except for water-soluble N. Levels of fertilizer adhesive significantly affected the pH (H2O) and total soil N, but did not show significant effects on the EC and soil available N. The diameter of fertilizer had no effect on all soil chemical variables.

Keywords


fertilizer; NZEO-SR; zeolite

Full Text:

PDF

References


Bobonich, F. M. (1990). Chemical composition and ion exchange properties of zeolites. Theoretical and Experimental Chemistry, 26(3), 355–359. http://doi.org/https://doi.org/10.1007/BF00641351

Cabezas, W. A. R. L., De Arruda, M. R., Cantarella, H., Pauletti, V., Trivelin, P. C. O., & Bendassolli, J. A. (2005). Imobilização de nitrogênio da uréia e do sulfato de amônio aplicado em pré-semeadura ou cobertura na cultura de milho, no sistema plantio direto. Revista Brasileira de Ciencia Do Solo, 29(2), 215–226. http://doi.org/10.1590/S0100-06832005000200007

de Almeida Acosta, J. A., Carneiro Amado, T. J., de Neergaard, A., Vinther, M., da Siva, L. S., & Nicoloso, R. da S. (2011). EFFECT OF N-15-LABELED HAIRY VETCH AND NITROGEN FERTILIZATION ON MAIZE NUTRITION AND YIELD UNDER NO-TILLAGE. REVISTA BRASILEIRA DE CIENCIA DO SOLO, 35(4), 1337–1345. http://doi.org/10.1590/S0100-06832011000400028

De Castro Gava, G. J., Ocheuze Trivelin, P. C., Vitti, A. C., & De Oliveira, M. W. (2005). Urea and sugarcane straw nitrogen balance in a soil-sugarcane crop system. Pesquisa Agropecuaria Brasileira, 40(7), 689–695. http://doi.org/10.1590/S0100-204X2005000700010

Freney, J. R. (1997). Strategies to reduce gaseous emissions of nitrogen from irrigated agriculture. Nutrient Cycling in Agroecosystems, 48, 155–160. http://doi.org/10.1023/A:1009735901543

Ganrot, Z., Dave, G., & Nilsson, E. (2007). Recovery of N and P from human urine by freezing, struvite precipitation and adsorption to zeolite and active carbon. Bioresource Technology, 98(16), 3112–3121. http://doi.org/10.1016/j.biortech.2006.10.038

Kimura, T., & Kurashima, K. (1991). Quantitative Estimates of the Budgets of Nitrogen Applied as Fertilizer, Urine and Feces in a Soil-Grass System. Japan International Research Center for Agricultural Sciences, 25(2), 101–107.

Kithome, M., Paul, J. W., Lavkulich, L. M., & Bomke, A. A. (1998). Kinetics of Ammonium Adsorption and Desorption by the Natural Zeolite Clinoptilolite. Soil Science Society of America Journal, 62(3), 622. http://doi.org/10.2136/sssaj1998.03615995006200030011x

Leggo, P. J., & Ledésert, B. (2001). Use of organo-zeolitic fertilizer to sustain plant growth and stabilize metallurgical and mine-waste sites. Mineralogical Magazine, 65(5), 563–570. http://doi.org/10.1180/002646101317018398

Lin, D. X., Fan, X. H., Hu, F., Zhao, H. T., & Luo, J. F. (2007). Ammonia Volatilization and Nitrogen Utilization Efficiency in Response to Urea Application in Rice Fields of the Taihu Lake Region, China. Pedosphere, 17(5), 639–645. http://doi.org/10.1016/S1002-0160(07)60076-9

Lin, Z. cheng, Dai, Q. gen, Ye, S. chao, Wu, F. guan, Jia, Y. shu, Chen, J. dou, … Wei, H. yan. (2012). Effects of Nitrogen Application Levels on Ammonia Volatilization and Nitrogen Utilization during Rice Growing Season. Rice Science, 19(2), 125–134. http://doi.org/10.1016/S1672-6308(12)60031-6

Park, M., & Komarneni, S. (1998). Ammonium nitrate occlusion vs. nitrate ion exchange in natural zeolites. Soil Science Society of America Journal, 62(5), 1455–1459. http://doi.org/10.2136/sssaj1998.03615995006200050044x

Pinto Coelho, R. M., Demoura, R. T., & Moreira, A. (1997). Zooplankton and bacteria contribution to phosphorus and nitrogen internal cycling in a tropical and eutrophic reservoir: Pampulha Lake, Brazil. Internationale Revue Der Gesamten Hydrobiologie, 82(2), 185–200. http://doi.org/10.1002/iroh.19970820206

Purnomo, C. W., Lenora, B., Budhijanto, W., & Hinode, H. (2017). Sorption and Ion Exchange Behaviour of Natural Zeolite Packing. Makara Journal of Technology, 21(1), 33–36. http://doi.org/10.7454/mst.v21i1.3077

Putra, H. P., Mursanto, B. P., & Handayani, A. (2014). Utilization of Human Urine as Fertilizer with Magnesium Oxide ( MgO ), Zeolite and Activated Carbon as Absorbent. International Journal on Advanced Science, Engineering and Information Technology, 4(3), 49–52. http://doi.org/10.18517/ijaseit.4.3.395

Raun, W. R., & Johnson, G. V. (1999). Improving nitrogen use efficiency for cereal production. Agronomy Journal, 91(June), 357–363. http://doi.org/10.2134/agronj1999.00021962009100030001x

Sánchez, P. C. M., & Pariente, J. P. (2011). Zeolites and Ordered Porous Solids: Fundamentals and Applications. València, Spain: Universitat Politècnica de València.

Sepaskhah, A. R., & Barzegar, M. (2010). Yield, water and nitrogen-use response of rice to zeolite and nitrogen fertilization in a semi-arid environment. Agricultural Water Management, 98(1), 38–44. http://doi.org/10.1016/j.agwat.2010.07.013

Sepaskhah, A. R., & Yousefi, F. (2007). Effects of zeolite application on nitrate and ammonium retention of a loamy soil under saturated conditions. Australian Journal of Soil Research, 45(5), 368–373. http://doi.org/10.1071/SR06069

Torma, S., Vilcek, J., Adamisin, P., Huttmanova, E., & Hronec, O. (2014). Influence of natural zeolite on nitrogen dynamics in soil. Turkish Journal of Agriculture and Forestry, 38(5), 739–744. http://doi.org/10.3906/tar-1311-13

Tsintskaladze, G., Eprikashvili, L., Urushadze, T., Kordzakhia, T., Sharashenidze, T., Zautashvili, M., & Burjanadze, M. (2016). Nanomodified natural zeolite as a fertilizer of prolonged activity. Annals of Agrarian Science, 14(3), 163–168. http://doi.org/10.1016/j.aasci.2016.05.013

van straaten, P. (2002). Rocks for Crops. Agrominerals of Sub Saharan Africa. Canada: Department of Land Resource Science, University of Guelph.

Vilcek, J., Torma, S., Adamisin, P., & Hronec, O. (2013). Nitrogen Sorption and Its Release in the Soil After Zeolite Application. Bulgarian Journal of Agricultural Science, 19(2), 228–234.

Whitehead, D. C. (2000). Nutrient elements in grassland: soil-plant-animal relationships. CABI Publishing. http://doi.org/10.1079/9780851994376.0000

Xiong-hui, J., Sheng-xian, Z., Yan-hong, L., & Yu-lin, L. (2007). Study of Dynamics of Floodwater Nitrogen and Regulation of Its Runoff Loss in Paddy Field-Based Two-Cropping Rice with Urea and Controlled Release Nitrogen Fertilizer Application. Agricultural Sciences in China, 6(2), 189–199. http://doi.org/10.1016/S1671-2927(07)60034-0

Yan, X., Jin, J. Y., He, P., & Liang, M. Z. (2008). Recent Advances on the Technologies to Increase Fertilizer Use Efficiency. Agricultural Sciences in China, 7(4), 469–479. http://doi.org/10.1016/S1671-2927(08)60091-7




DOI: http://dx.doi.org/10.15608%2Fstjssa.v14i2.894

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

View SAINS TANAH Stats